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Research Question

Setting

The presence of unobserved heterogeneity in Exponential Random Graph Models (ERGM) is an obvious concern. We
extend the well-known Exponential Random Graph Model (ERGM) by including random effects to account for
unobserved heterogeneity in the network. This leads to an ERGM with random structure on the coefficients.
Estimation is carried out by combining approximate penalized pseudo-likelihood estimation for the random effects
with maximum likelihood estimation for the remaining parameters in the model. This allows to fit nodal
heterogeneity effects even for large scale networks.

Definition of a Network
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
Yij =

{
1, if vertex i and vertex j are connected

0, otherwise or if i = j

where i , j = 1, ...,N .

⇒ Undirected network, this implies Yij = Yji .

Y = (Yij)i ,j=1,...,N denotes the network adjacency matrix.

Exponential Random Graph Model

P(Y = y |θ) =
exp
(
θT s(y)

)
κ(θ)

,

Where
where Y is a random network on n nodes.

θ is a vector of parameters.

s(y) a known vector of so-called network statistics on y .

κ(θ) is a normalizing constant, makes all the probabilities sum to 1.

Conditional “log-odds” of an edge

yij = 0 or 1, depending whether there is an edge.

y−ij denotes the status of all pairs in y other than (i , j).

y+ij denotes the same network as y but with yij = 1.

y−ij denotes the same network as y but with yij = 0.

P(Yij = 1|Y−ij , θ)

P(Yij = 0|Y−ij , θ)
= exp

[
θT s(y+ij )

θT s(y−ij )

]
⇔logit

[
P(Yij = 1 |Y−ij , θ)

]
= θT

[
s(y+ij )− s(y−ij )

]︸ ︷︷ ︸
=: sij(y)

,

so θT
[
s(y+ij )− s(y−ij )

]
is the conditional log-odds of an edge (i , j).

where sij(y) denotes the vector of change statistics.

1 Modeling process

In our approach we postulate

logit
[
P(Yij = 1 |Y−ij , θ)

]
= θT sij(y) + ui + uj ,

with ui ∼ N(0, σ2
u), for i = 1, ...,N .

This leads to the entire model

P(Y = y |θ, u) =
exp
(
θT s(y) + uT t(y)

)
κ(θ, u)

,

where t(y) =
(∑
j 6=1

y1j ,
∑
j 6=2

y2j , . . . ,
∑
j 6=N

yNj
)

.

Iterative Estimation Algorithm

1 Estimate u with pseudo-likelihood estimation approach (i.e. GLMM):

i. log(yij|y ,θ,u) = θ(0) + u
(1)
i + u

(1)
j

ii. extract the vector of the random effects u(1)

2 Estimate θ with stepping algorithm approach and set u(1) as offset parameter:

i. log
(
P(yij = 1|y−ij , θ, u)

)
= θ(1)sij(y) + u(1)t(y)︸ ︷︷ ︸

offset

ii. extract θ(1)sij(y)

3 Update step 1 and estimate u(2) taking θ(1)sij(y) as offset parameter:

i. log(yij|y ,θ,u) = θ(1)sij(y)︸ ︷︷ ︸
offset

+u
(2)
i + u

(2)
j

ii. extract the vector of the random effects u(2)

4 Start again with step 2 until u(i) and θ(i). converge

2 Network statistics in our model
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Figure 1: Left: The network statistics included in the model which have to be estimated with our iterative

estimation algorithm – edges: s(y) =
∑

i<j yij , 2-stars: s(y) =
∑

i<j<k yij yik and gwesp:

s(y , α) =
∑

d gd(α)
∑

i<j yij1{
∑

k yikyjk=d}.

3 Data example and results

Figure 2: Facebook network data example of 1000 nodes, computation time 11h 40min using five 2.2Ghz

cores in parallel for 100 iterations.
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Figure 3: From left to right: Trend of the gwesp network statistics through 100 iterations, the blue and the

green lines have different starting values θ(0) for convergence reasons. The trend of the 2-stars network

statistics through 100 iterations. The third plot shows the density of the random effects which are estimated

in each iteration step.

4 Model Evaluation & Outlook

Likelihood of the extended ERGM:

l(θ, σ2) = log

∫
exp
{
θT s(y) + uT t(y)

}
κ
(
θ, u
) ·

n∏
i=1

φ
( ui
σ2u

)
du.

⇒ Laplace Approximation:

l(θ, σ2) ≈ log

{
exp
{
θT s(y) + ûT t(y)

}
κ
(
θ, û
) ·

n∏
i=1

φ
( ûi
σ2u

) ∣∣Ju (θ, û; σ2u
)∣∣−1

2

}
.

where,

Ju(θ, u;σ2u) =
1

N

N∑
j=1

[
t(y ?(j))− E(t(y)?)

]
·
[
t(y ?(j))− E(t(y)?)

]t
, κ̂(θ̂, û) =

1

N

N∑
j=1

exp
(
θ̂T s(y ?(j)) + ûT t(y ?(j))

)
.

Akaike Information Criterium for the extended ERGM

AIC = −2 l(θ̂, σ2) + 2p

Outlook

1 Simulation based study for the model evalution.

2 Speeding up the implementation.
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